Pacritinib(Synonyms: SB1518)

上海金畔生物科技有限公司为生命科学和医药研发人员提供生物活性分子抑制剂、激动剂、特异性抑制剂、化合物库、重组蛋白,专注于信号通路和疾病研究领域。

Pacritinib (Synonyms: SB1518) 纯度: 99.75%

Pacritinib (SB1518) 是一种有效的野生型 JAK2JAK2V617F 突变型抑制剂,IC50 分别为 23 nM 和 19 nM。Pacritinib 也抑制 FLT3 及其突变型 FLT3D835YIC50 分别为 22 nM 和 6 nM。

Pacritinib(Synonyms: SB1518)

Pacritinib Chemical Structure

CAS No. : 937272-79-2

规格 价格 是否有货 数量
Free Sample (0.1-0.5 mg)   Apply now  
10 mM * 1 mL in DMSO ¥1560 In-stock
2 mg ¥950 In-stock
5 mg ¥1500 In-stock
10 mg ¥2700 In-stock
50 mg ¥12000 In-stock
100 mg ¥21000 In-stock
200 mg   询价  
500 mg   询价  

* Please select Quantity before adding items.

Pacritinib 相关产品

相关化合物库:

  • Drug Repurposing Compound Library Plus
  • Clinical Compound Library Plus
  • Bioactive Compound Library Plus
  • Epigenetics Compound Library
  • Immunology/Inflammation Compound Library
  • JAK/STAT Compound Library
  • Kinase Inhibitor Library
  • Protein Tyrosine Kinase Compound Library
  • Stem Cell Signaling Compound Library
  • Anti-Cancer Compound Library
  • Clinical Compound Library
  • Anti-Aging Compound Library
  • Drug Repurposing Compound Library
  • Differentiation Inducing Compound Library
  • Reprogramming Compound Library
  • Macrocyclic Compound Library
  • Anti-Breast Cancer Compound Library
  • Anti-Lung Cancer Compound Library
  • Anti-Pancreatic Cancer Compound Library
  • Anti-Blood Cancer Compound Library
  • Anti-Liver Cancer Compound Library
  • Rare Diseases Drug Library

生物活性

Pacritinib (SB1518) is a potent inhibitor of both wild-type JAK2 (IC50=23 nM) and JAK2V617F mutant (IC50=19 nM). Pacritinib also inhibits FLT3 (IC50=22 nM) and its mutant FLT3D835Y (IC50=6 nM).

IC50 & Target[1]

JAK2V617F

19 nM (IC50)

JAK2wt

23 nM (IC50)

Tyk2

50 nM (IC50)

JAK3

520 nM (IC50)

JAK1

1280 nM (IC50)

FLT3D835Y

6 nM (IC50)

FLT3wt

22 nM (IC50)

体外研究
(In Vitro)

Relative to JAK2, Pacritinib (SB1518) is two-fold less potent against TYK2 (IC50=50 nM), 23-fold less potent against JAK3 (IC50=520 nM) and 56-fold less potent against JAK1 (IC50=1280 nM). The rest of the evaluated kinases show <30% inhibition when tested against 100 nM Pacritinib at adenosine triphosphate concentrations equivalent to its Michaelis constant (Km). Pacritinib inhibits MV4-11 and MOLM-13 cells (both of which are cell lines derived from human acute myeloid leukemias driven by an FLT3 ITD mutation) with IC50 of 47 and 67 nM, respectively. Pacritinib inhibits Karpas 1106P and Ba/F3-JAK2V617F cells (which are cell lines dependent on JAK2 signaling) with IC50 of 348 and 160 nM, respectively[1]. FLT3-ITD harboring MV4-11 cells are treated for 3 h with different concentrations of Pacritinib (SB1518) and pFLT3, pSTAT5 and pERK1/2 levels are quantified. Pacritinib leads to a dose-dependent decrease of pFLT3, pSTAT5, pERK1/2 and pAkt with IC50 of 80, 40, 33 and 29 nM, respectively. The IC50 on auto-phosphorylation of FLT3-wt in RS4;11 is four-fold higher (IC50=600 nM) compare with FLT3-ITD in MV4-11 and MOLM-13 cells. However, STAT5 inhibition is detected at much lower concentrations of Pacritinib (IC50=8 nM)[2].

上海金畔生物科技有限公司 has not independently confirmed the accuracy of these methods. They are for reference only.

体内研究
(In Vivo)

For evaluation of efficacy in the Ba/F3-JAK2V617F engraftment model, mice are treated with Pacritinib (SB1518) at doses of 50 or 150 mg/kg p.o. q.d. for 13 days, with drug dosing starting 4 days after cell inoculation. At study termination, the vehicle control mice exhibit splenomegaly and hepatomegaly (~7- and 1.3-fold, respectively), reminiscent of the symptoms found in patients with symptomatic myelofibrosis. SB1518 treatment at 150 mg/kg p.o. q.d. significantly ameliorates all these symptoms, with 60% (±9%) normalization of spleen weight and 92% (±5%) normalization of liver weight and is well tolerated without significant weight loss or any hematological toxicities, including thrombocytopenia and anemia[1]. In rats, Pacritinib (SB1518) shows moderately fast absorption (tmax=4 h), with a peak concentration of 114 ng/mL, AUC of 599 ng•h/mL, and a terminal half-life of ~6 h following a single oral dose of 10 mg/kg. In dogs, Pacritinib (SB1518) is rapidly absorbed (tmax=2.0 h), with a peak concentration of ~12 ng/mL, AUC of 53 ng•h/mL, and a terminal half-life of 3.4 h following a single oral dose of 3 mg/kg[3].

上海金畔生物科技有限公司 has not independently confirmed the accuracy of these methods. They are for reference only.

Clinical Trial

分子量

472.58

Formula

C28H32N4O3

CAS 号

937272-79-2

运输条件

Room temperature in continental US; may vary elsewhere.

储存方式
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 6 months
-20°C 1 month
溶解性数据
In Vitro: 

DMSO : 5 mg/mL (10.58 mM; Need ultrasonic)

配制储备液
浓度 溶剂体积 质量 1 mg 5 mg 10 mg
1 mM 2.1160 mL 10.5802 mL 21.1604 mL
5 mM 0.4232 mL 2.1160 mL 4.2321 mL
10 mM 0.2116 mL 1.0580 mL 2.1160 mL

*

请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效
储备液的保存方式和期限:-80°C, 6 months; -20°C, 1 month。-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。

In Vivo:

请根据您的实验动物和给药方式选择适当的溶解方案。以下溶解方案都请先按照 In Vitro 方式配制澄清的储备液,再依次添加助溶剂:

——为保证实验结果的可靠性,澄清的储备液可以根据储存条件,适当保存;体内实验的工作液,建议您现用现配,当天使用; 以下溶剂前显示的百
分比是指该溶剂在您配制终溶液中的体积占比;如在配制过程中出现沉淀、析出现象,可以通过加热和/或超声的方式助溶

  • 1.

    请依序添加每种溶剂: 10% DMSO    40% PEG300    5% Tween-80    45% saline

    Solubility: ≥ 1 mg/mL (2.12 mM); Clear solution

    此方案可获得 ≥ 1 mg/mL (2.12 mM,饱和度未知) 的澄清溶液。

    以 1 mL 工作液为例,取 100 μL 10.0 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀;向上述体系中加入50 μL Tween-80,混合均匀;然后继续加入 450 μL生理盐水定容至 1 mL。

    将 0.9 g 氯化钠,完全溶解于 100 mL ddH₂O 中,得到澄清透明的生理盐水溶液

  • 2.

    请依序添加每种溶剂: 10% DMSO    90% (20% SBE-β-CD in saline)

    Solubility: 1 mg/mL (2.12 mM); Suspended solution; Need ultrasonic

    此方案可获得 1 mg/mL (2.12 mM) 的均匀悬浊液,悬浊液可用于口服和腹腔注射。

    以 1 mL 工作液为例,取 100 μL 10.0 mg/mL 的澄清 DMSO 储备液加到 900 μL 20% 的 SBE-β-CD 生理盐水水溶液中,混合均匀。

    将 2 g 磺丁基醚 β-环糊精加入 5 mL 生理盐水中,再用生理盐水定容至 10 mL,完全溶解,澄清透明
  • 3.

    请依序添加每种溶剂: 5% DMSO    40% PEG300    5% Tween-80    50% saline

    Solubility: ≥ 0.3 mg/mL (0.63 mM); Clear solution

*以上所有助溶剂都可在 上海金畔生物科技有限公司 网站选购。
参考文献
  • [1]. Hart S, et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia. 2011 Nov;25(11):1751-9.

    [2]. Hart S, et al. Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia. Blood Cancer J. 2011 Nov;1(11):e44.

    [3]. William AD, et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JA

Kinase Assay
[1]

All assays are carried out in 384-well white microtiter plates. Compounds (e.g., Pacritinib) are 4-fold serially diluted in 8 steps, starting from 10 µM. The reaction mixture consist of 25 µL assay buffer (50 mM HEPES pH 7.5, 10 mM MgCl2, 5 mM MnCl2, 1 mM DTT, 0.1 mM Na3VO4, 5 mM β-glycerol phosphate). For FLT3 assays, the reaction contain 2.0 µg/mL FLT3 enzyme, 5 µM of poly(Glu,Tyr) substrate and 4 µM of ATP. For JAK1 assays, the reaction contain 2.5 µg/mL of JAK1 enzyme, 10 µM of poly(Glu,Ala,Tyr) substrate and 1.0 µM of ATP. For JAK2 assays, the reaction contain 0.35 µg/mL of JAK2 enzyme, 10 µM of poly (Glu,Ala,Tyr) substrate and 0.15 µM of ATP. For JAK3 assays, the reaction contain 3.5 µg/mL of JAK3 enzyme, 10 µM of poly (Glu,Ala,Tyr) substrate and 6.0 µM of ATP. For TYK2 assays, the reaction contain 2.5 µg/mL of TYK2 enzyme, 10 µM of poly (Glu,Ala,Tyr) substrate and 0.15 µM of ATP. The reaction is incubated at room temperature for 2 h prior to addition of 13 µL PKLight detection reagent. After 10 min incubation luminescent signals are read on a multi-label plate reader[1].

上海金畔生物科技有限公司 has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay
[1]

SET-2 and Karpas 1106P cells, and Ba/F3-JAK2V617F-GFP-Luc cells are used. For proliferation assays in 96-well plates, cells are seeded at 30-50% confluency and are treated the following day with compounds (e.g., Pacritinib) (in triplicate) at concentrations up to 10 μM for 48 h. Cell viability is monitored using the CellTiter-Glo assay. Dose-response curves are plotted to determine IC50 values for the compounds using the XL-fit software[1].

上海金畔生物科技有限公司 has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[1][3]

Mice[1]
Female athymic BALB/c nude mice (BALB/cOlaHsd-Foxn1nu) of age 12 weeks are used; and female SCID Beige mice (CB17.Cg-PrkdcscidLystbg/Crl) of age 9-10 weeks are used. For the SET-2 leukemia model, 5×106 tumor cells are injected subcutaneously in the right flank of severe combined immunodeficient beige mice. The cells are resuspended in 50 μL serum-free growth medium, mixed 1:1 with Matrigel and injected in a total volume of 100 μL. Tumor volumes are determined by caliper measurements and drug treatment is initiated after 31 days when tumors have reached a mean volume of 280 mm3 (tumor volume (mm3)=(w2×l)/2). This study is performed using 12 mice per group and animals are killed 3 h post-dose on day 18. Tumor growth inhibition is calculated. For the efficacy studies, mice are treated by oral gavage (10 mL/kg body weight) with doses from 50 to 150 mg/kg SB1518.
Rats and Dogs[3]
Male Wistar rats (aged 6-8 weeks, weighing 270 to 325 g) and male Beagle dogs (6 to 7 months of age, weighing 9-11 kg) are used in this study. The oral doses for dogs and rats are 3, and 10 mg/kg, respectively. The doses are administered, by gavage, as suspensions (0.5 % methylcellulose and 0.1%tween 80) to rats, and as gelatin capsules to dogs. Following oral dosing, serial blood samples are collected (jugular vein in dogs, and superior vena cava in rats) at different time points (0 to 24 h) in tubes containing K3EDTA as anticoagulant, and centrifuged, the plasma is separated and stored at -70°C until analysis. Plasma samples are processed and analyzed by LC/MS/MS. Pharmacokinetic parameters are estimated by noncompartmental methods using WinNonlin.

上海金畔生物科技有限公司 has not independently confirmed the accuracy of these methods. They are for reference only.

参考文献
  • [1]. Hart S, et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia. 2011 Nov;25(11):1751-9.

    [2]. Hart S, et al. Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia. Blood Cancer J. 2011 Nov;1(11):e44.

    [3]. William AD, et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JA

所有产品仅用作科学研究或药证申报,我们不为任何个人用途提供产品和服务